广东快乐十分预测器

当前位置:广东快乐10分预测 > 广东快乐十分预测器 > 动物研究所开采全数蒙受响应本事的新型核酸G

动物研究所开采全数蒙受响应本事的新型核酸G

来源:http://www.btxygg.com 作者:广东快乐10分预测 时间:2019-11-08 10:44

图1. 嗜热G-四链体/hemin DNA酶在不同温度下催化底物反应的示意图

除了传统的DNA双螺旋,富含鸟嘌呤的核酸分子可以形成四股链的G-四链体结构。能够形成G-四链体的序列在基因组DNA中广泛存在并在恒温动物启动子附近聚集。这一现象提示G-四链体具有调控基因表达的生物学功能。在过去20余年中,人们所研究的核酸G-四链体主要是由4段含有3个及以上连续G的分子内结构。

该工作发表后得到了广泛关注,被phys.org以“Integrated nanozymes for brain chemistry”进行了报道。

鞠熀先教授研究组专注于仿生分子识别、仿生催化与信号放大研究,在973计划、国家自然科学基金等项目资助下提出了多种仿生分子识别体系与信号放大策略,将仿生催化模拟酶用于生物传感,建立了系列性的生物分子高效检测方法。在G-四链体/hemin领域,他们将其催化活性与该组首创的量子点电子化学发光传感结合,提出了蛋白质标志物的超灵敏电致化学发光免疫分析方法;将G-四链体/hemin与临位触接反应结合,建立了DNA与蛋白质标志物的多种化学发光成像检测方法。近期,该组系统地开展提高G-四链体/hemin DNA酶活性的研究工作(Chem. Eur. J. 2017, 23, 4210-4215),揭示了G-四链体的构效关系(J. Am. Chem. Soc. 2017, 139, 7768-7779)。

动物所发现具有环境响应能力的新型核酸G-四链体结构

这些研究工作得到了国家青年千人计划、国家自然科学基金、江苏省自然科学基金、江苏省双创计划、南京大学启动基金、青年973等的资助。

广东快乐十分预测器 1

在G-四链体其它方面研究组亦获得两项进展。博士生吴壬乙在活细菌中检测到了DNA:RNA杂合G-四链体的形成和它对转录造成的中断,并发现杂合G-四链体相对于经典G-四链体是导致转录中断的主要因素。这一发现表明杂合G-四链体可以在活细胞中形成并具有干预细胞转录活性的能力。该工作以吴壬乙为第一作者于2015年发表于Angew Chem Int Ed

南京大学现代工程与应用科学学院生物医学系魏辉教授课题组致力于研究纳米材料与生物分子之间的相互作用,并力图利用这些相互作用实现功能化的纳米材料在生物医学以及生物传感中的应用。在先前的工作中,他们通过在碳纳米材料上自组装具有电化学活性的小分子作为内参,并结合碳纳米材料对抗坏血酸优良的催化性能,实现了对活动物脑内抗坏血酸的高灵敏、高选择性测定(Anal. Chem., 2015, 87, 8889)。另一方面,他们巧妙利用功能化的DNA分子在溶液中含有K 的状态下易于形成正平行结构且该结构能够高效增强卟啉类物质荧光的特点,发展了一种基于DNA技术的,可用于同时检测活动物组织内的K 和原卟啉的分析方法(Anal. Chem., 2016, 88, 2937)。

(化学化工学院 科学技术处)

广东快乐十分预测器 2

广东快乐十分预测器 3

与经典G-四链体相比,研究组所发现的DNA:RNA杂合G-四链体和含G-空缺G-四链体具有的独特性质是它们能够响应生理过程或生理状态,进而进行相关调控。例如DNA:RNA杂合G-四链体在转录中形成又反过来调节转录活性。含G-空缺G-四链体可能通过响应GMP和GTP的生理浓度而感知细胞的代谢状态,改变调节能力。根据目前的统计,研究组所发现的DNA:RNA杂合G-四链体和含G-空缺G-四链体数量在人基因组占到了三种G-四链体的80%以上。这两种新G-四链体的生理响应能力和数量表明它们是人基因组中具有更大生理调控潜能的主流G-四链体结构。

由于蛋白质的温度敏感性,蛋白酶的催化性能与温度相关,在应用上受到很大的限制。寻找、发现能够在极端环境如高温下仍具有高催化能力、高稳定性的仿生模拟酶具有十分重要的意义。近年来,具有催化活性的纳米结构材料和G-四链体/hemin DNA模拟酶受到广泛关注,已成为新型仿生模拟酶开发的重点方向。在G-四链体/hemin领域,由分子内G四链体/hemin形成的DNA模拟酶已在生物催化、生物传感等领域得到广泛应用,但其热稳定性差,无法用于极端环境。基于四条链形成的四元G四链体具有很好的热稳定性,鞠熀先教授研究组通过对四元G四链体的末端进行碱基修饰,并对反应的离子进行筛选,提高hemin和四元G四链体的结合能力,发现了一种新型嗜热的高活性G-四链体/hemin DNA酶。该工作在四元G四链体的末端修饰上不同的碱基,发现腺嘌呤可以大幅度的提高DNA酶的催化活性,为提高反应温度进行模拟酶催过功能如活化能、pH依赖性等的研究奠定了基础。末端修饰腺嘌呤的四元G四链体结构在高温下不仅可以稳定存在,也可保持与hemin的结合能力及形成模拟酶后的催化活性。该工作探索了该嗜热DNA酶在高温下的潜在应用:可以有效地去除污水中对人体有害的有机小分子,在不同的有机溶液中该酶也同样具有高的催化活性。

另外博士生刘珈泉发现转录诱导产生的G-四链体具有DNA链的极性化,即它倾向在非模板链上形成而不在模板链上形成。这一结果表明RNA聚合酶具有决定G-四链体形成的能力,同时也说明不同链上的G-四链体可能有不同的生理活性。该工作以刘珈泉为第一作者于2015年发表于Angew Chem Int Ed,并被评为VIP(Very Important Paper)。

魏辉教授最近被选为英国皇家化学会会士(Fellow of the Royal Society of Chemistry)。

图2. 嗜热G-四链体/hemin DNA酶在不同温度下的催化活性及热稳定性研究

中国科学院动物研究所谭铮研究组于2013年发现了一种在转录中由DNA非模板链和所转录的RNA共同形成的新型G-四链体结构,即DNA:RNA杂合G-四链体。研究组最近又发现一种具有环境响应能力的新型核酸G-四链体结构。这种新G-四链体的结构特征是在G-quartet平面上含有G-空缺,它可以从环境中吸收一个含Guanine碱基的分子而形成一个更加稳定的结构。这种被命名为GVBQ(G-vacancy-bearing G-quadruplexes,含G-空缺G-四链体)的G-四链体可以在单链核酸和转录的双链DNA中形成。它具有响应原核和真核细胞的生理浓度的GMP和GTP的能力并可以借此影响DNA聚合酶的DNA复制活性。生物信息学分析发现这类结构在原核和真核基因中有特殊的分布规律,提示它们可以在细胞中形成并与基因表达调控有关。该项研究已于2015年在线发表在PNAS,第一作者为博士生李新敏,通讯作者为郑克威和谭铮。

广东快乐十分预测器 4

化学化工学院鞠熀先教授研究组在仿生分子识别与仿生催化领域取得重要研究进展,发现了一种嗜热型高活性的DNA酶,相关成果“Thermophilic Tetramolecular G-quadruplex/Hemin DNAzyme”于11月6日在Angew. Chem. Int. Ed., DOI: 10.1002/anie.201708964在线发表。该成果由博士生郭悦华为第一作者,周俊副教授和鞠熀先教授为通讯作者完成。该研究组博士生陈杰林、中科院大连化学物理研究所博士生程明攀以及法国勃艮第大学David Monchaud教授参与了相关工作。

上述研究工作得到科技部“973”项目、国家自然科学基金委重点和面上基金的资助。

利用生物学或者化学的方法模拟天然酶不仅具有重要的科学意义而且有着巨大的实际应用价值。近几年来,人们发现某些纳米材料同样存在着类似于天然酶属性的催化活性,从而引起了人们极大的关注。与传统的人工模拟酶相比,这类新型的纳米模拟酶(nanozymes)除了同样具有更加稳定的化学性质和催化活性,成本低廉等优势,更有着自己独特的性质,例如更易于实现大规模的制备、高的比表面积、催化活性可调、以及具有光电磁学特性等。近几年来,纳米模拟酶在生物医学等领域的越来越受到人们的关注。

文章链接:1 2 3

最近,该课题组研究人员及其合作者发现利用超分子自组装技术,他们可以实现同时将天然酶分子葡萄糖氧化酶以及能够模拟其他天然过氧化物酶的化学催化剂血红素包裹在金属有机框架化合物ZIF-8中。这种通过一步法制得的生物纳米催化剂被称之为“集成式纳米模拟酶”(integrated nanozymes)。当这种纳米模拟酶被加入到含有葡萄糖以及显色剂的溶液中时,葡萄糖被纳米材料中的葡萄糖氧化酶氧化产生过氧化氢。生成的过氧化氢随即在周围的血红素的催化下氧化显色剂,使得反应试剂变色,实现对葡萄糖的可视化检测。由于这两种催化剂被集成在一个有限的纳米空间内部,中间产物的扩散得到了极大的抑制,从而大大提高了整体的催化效率。此外,与游离的天然酶相比,这种“集成式纳米模拟酶”也表现出了更好的热稳定性以及循环使用的能力。通过南京大学现代工程与应用科学学院与南京大学鼓楼医院及美国Emory大学合作,他们利用该“集成式的纳米模拟酶”成功实现了活动物脑内葡萄糖浓度的实时、动态观测。该工作发表在最新一期美国《分析化学》杂志上(Anal. Chem., 2016, 88, 5489–5497)。

相关文章链接:

(现代工程与应用科学学院 科学技术处)

了解更多信息,请关注魏辉小组主页:

图1. “集成式纳米模拟酶”用于脑化学研究。

本文由广东快乐10分预测发布于广东快乐十分预测器,转载请注明出处:动物研究所开采全数蒙受响应本事的新型核酸G

关键词: 动物 活性 发现 鞠熀先 核酸